PEMF Therapy Effects & Changes in Body Processes

Many benefits of Pulsed Electro-Magnetic Field ("PEMF") therapy have been demonstrated through more than 2,000 University level double-blind medical studies done in many countries with many different PEMF therapy devices. Some of the positive effects of PEMF therapy were well established by the mid 1900’s. The first commercially produced low power PEMF devices entered the market in the early 1900s. These were used for studies and experimentation in healing and cellular wellness. They were sold both to consumers and as medical devices to doctors. The first commercially produced high power PEMF devices entered the market around 1975. They focused on the health of muscles, nerves, tendons, ligaments and cartilage, on reducing pain and on cellular regeneration.

Medical PEMF therapy has been accepted in many countries around the world. The US FDA accepted the use of PEMF devices in the healing of non-union bone fractures in 1979, urinary incontinence and muscle stimulation in 1998, and depression and anxiety in 2006. Israel has accepted the use of PEMF devices for migraine headaches. Canada has accepted PEMF devices for several uses. The European Union has many acceptances for the use of PEMF therapy in many areas including healing and recovery from trauma, degeneration and the treatment of the pain and range of motion issues.

Differences in PEMF Therapy Devices

- **Power Level**
 The magnetic energy produced by the various PEMF devices can be as little as that of the Earth’s magnetic field to more than 10,000 times as powerful. The lower power devices are generally used for cellular health and bone healing. The higher power devices are generally used for recovery of trauma from accidents, sports injuries and surgery, as well as for control and improvement of degenerative diseases. Both low power and high power devices help reduce pain, but the higher power devices are more effective in doing so.

- **Continuous or Pulsed Waveform**
 Although there are exceptions in both types, most low power PEMF devices have a continuous waveform while most high power PEMF devices have a pulsed waveform.

- **Shape of Waveform**
 The continuous waveform PEMF devices can produce a square, a saw tooth, a sine wave or a custom waveform. The pulsed output PEMF devices usually produce a biphasic short duration pulse.

- **Control of Frequency**

Many low power PEMF devices have preset frequencies to choose from according to the manufacturers’ own different theories. Most high power PEMF devices have a user variable control of the pulse rate.

- **Duration of Treatment**
 Depending on the power level of the PEMF device, the treatment duration can be from three minutes to hours.

Primary Benefits of PEMF

Clinical evidence shows that PEMF therapy reduces pain associated with trauma from accidents, sports injuries, surgeries and burns as well as from disease and degeneration.

PEMF therapy improves these conditions in many different concurrent ways including mechanical, chemical, electrical and magnetic processes within the cells of the body.

In 1995, Siskin and Walker provided a summary of clinical results on soft tissue damage. They observed no adverse effects and the following positive effects were reported:

- Decreased pain
- Reduced inflammation
- Increased range of motion
- Faster functional recovery
- Reduced muscle loss after surgery
- Increased tensile strength in ligaments
- Faster healing of skin wounds
- Enhanced capillary formation
- Acceleration of nerve regeneration
- Decreased tissue necrosis.

In the “Beneficial effects of electromagnetic fields”, Bassett C. (Bioelectric Research Center, Columbia University, NY, 1993) applied time-varying pulsed magnetic fields designed to induce voltages similar to those produced normally during the dynamic mechanical deformation of connective tissues in an effort to control cellular function and understand the mechanisms by which PEMF treatment operates. He concluded: “A wide variety of challenging musculoskeletal disorders has been treated successfully over the past two decades... Many of the athermal bioresponses, at the cellular and subcellular levels, have been identified and found appropriate to correct or modify the pathologic processes for which PEMFs have been used... As understanding of mechanisms expands, specific requirements for field energetics are being defined and the range of treatable ills broadened. These include nerve regeneration, wound healing, graft behavior, diabetes, and myocardial and cerebral ischemia (heart attack and stroke), among other conditions. Preliminary data even suggests possible benefits in controlling malignancy”.

Table: PEMF Therapy Effects & Changes in Body Processes

<table>
<thead>
<tr>
<th>Effects & Changes in Body Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased pain</td>
</tr>
<tr>
<td>Reduced inflammation</td>
</tr>
<tr>
<td>Increased range of motion</td>
</tr>
<tr>
<td>Faster functional recovery</td>
</tr>
<tr>
<td>Reduced muscle loss after surgery</td>
</tr>
<tr>
<td>Increased tensile strength in ligaments</td>
</tr>
<tr>
<td>Faster healing of skin wounds</td>
</tr>
<tr>
<td>Enhanced capillary formation</td>
</tr>
<tr>
<td>Acceleration of nerve regeneration</td>
</tr>
<tr>
<td>Decreased tissue necrosis</td>
</tr>
</tbody>
</table>
The Dynamics of Pain and PEMF Therapy

For most individuals, aside from the multiple benefits of the therapy, one of the most relevant effects of PEMF therapy is the improvement of painful conditions, regardless of their origin. Pain mechanisms are complex and have peripheral and central nervous system aspects. During the last 100 years, theories of pain mechanism have evolved from specificity and summation models to the popular Gate Control Theory. The latter pain theory, proposed by Melzack/Wall/Casey (Wall and Melzack, 1989) has become the most important development in the field of pain management. Pain perception is no longer a straightforward afferent transmission of pain signal.

Overview of signal transduction pathways

A recent study on postoperative recovery led to the conclusion that PEMF therapy significantly reduced postoperative pain and narcotic use in the immediate postoperative period,... by means of a PEMF effect on nitric oxide signaling, which could impact the speed and quality of wound repair (Rohde et al, June 2009, Plastic & Reconstructive Surgery, Columbia, NY). Nitric oxide is one of the few gaseous signaling molecules and a key vertebrate biological messenger that plays a role in a variety of biological processes. Recent studies
uncover how PEMF therapy stimulates and rebalances many of these processes. There are several mechanisms by which nitric oxide has been demonstrated to affect the biology of living cells including oxidation of iron-containing proteins such as ribonucleotide reductase and aconitase, activation of the soluble guanylate cyclase, a single transmembrane protein, ADP ribosylation of proteins, a process of protein modification involved in cell signaling and the control of many cell processes including DNA repair, protein sulfhydryl group nitrosylation, another protein modification process, and iron regulatory factor activation.

Having a lifetime of a few seconds, nitric oxide is highly reactive and diffuses freely across cell membranes. These attributes make nitric oxide an ideal transient paracrine (between adjacent cells) and autocrine (within a single cell) signaling molecule. PEMF therapy is proven to effectively stimulate paracrine and autocrine communication.

Nitric oxide is also generated by phagocytes (monocytes, macrophages, and neutrophils) and, as such, is part of the human immune response. Nitric oxide has been demonstrated to activate NF-κB in peripheral blood mononuclear cells, an important protein complex that controls the transcription of DNA and a transcription factor in iNOS gene expression in response to inflammation. It plays a key role in regulating the immune response to infection and is implicated in processes of synaptic plasticity and memory (see diagram on this page). The endothelium (inner lining) of blood vessels uses nitric oxide to signal the surrounding smooth muscle to relax, thus resulting in vasodilatation and increasing blood flow. As blood flow increases, so does the oxygen intake. PEMF therapy has proven to effectively increase blood flow and provide muscle relaxation, maybe with better oxygenation of the muscle tissue.

NF-κB mechanism of action
In the chronic pain state, pain signal generation can actually occur in the central nervous system without peripheral noxious stimulation. In pain management, modulation of the pain signal transmission is a far better choice than neural destruction, and this can be achieved with PEMF.

Scientific evidence shows that acute persistent pain eventually sensitizes wide dynamic neurons in the dorsal horn of the spinal cord, the wind-up phenomenon, constituting the basis of developing chronic pain syndromes (Kristensen, 1992). Persistent and excessive pain has no biological good or necessary function. It is actually harmful to our well-being. Therefore, pain needs to be treated as early and as completely as possible and not to be left alone (Adams et al 1997).

The primary symptom in most patients with disorders affecting the soft tissue is pain. In many patients, daily activities are limited as pain causes a restriction of the range of movements. Causes of soft tissue pain can be depicted as musculo-skeletal, neurologic, vascular, and referred visceral-somatic or articular (Cailliet, 1991). Early reports of applying electrical current to treat pain date back to before 1800 (Ersek, 1981).

PEMF therapy has successfully been used for the control of pain associated with rotator cuff tendinitis, multiple sclerosis, carpal tunnel syndrome, and peri-arthritis (Battisti et al, 1998; Lecaire et al, 1991). An improvement was observed in 93% of patients suffering from carpal tunnel pain and in 83% in cases of rotator cuff tendinitis. PEMF therapy was also used for treatment of migraine, chronic pelvic pain, neck pain, and whiplash injuries (Rosch et al, 2004).

In a March, 2003 publication on Pain Management with PEMF Treatment, Dr. William Pawluk explains: “Magnetic fields affect pain perception in many different ways. These actions are both direct and indirect. Direct effects of magnetic fields are: neuron firing, calcium ion movement, membrane potentials, endorphin levels, nitric oxide, dopamine levels, acupuncture actions and nerve regeneration. Indirect benefits of magnetic fields on physiologic function are on: circulation, muscle, edema, tissue oxygen, inflammation, healing, prostaglandins, cellular metabolism and cell energy levels… Short-term effects are thought due to a decrease in cortisol and noradrenaline, and an increase in serotonin, endorphins and enkephalins. Longer term effects may be due to CNS and/or peripheral nervous system biochemical and neuronal effects in which correction of pain messages occur; and the pain is not just masked as in the case of medication”.

PEMF Therapy Reduces Pain

Many studies have demonstrated the positive effects of PEMF therapy on patients with pain, even as opposed to receiving traditional treatment, as well as against a placebo group getting no treatment. Some studies focused on the rapid, short-term relief while others demonstrate the long-term effects. The effectiveness of PEMF therapy has been demonstrated in a wide variety of painful conditions.

In a study entitled: “Double-blind, placebo-controlled study on the treatment of migraine with PEMF”, Sherman et al (Orthopedic Surgery Service, Madigan Army Medical Center, Tacoma, WA, USA) evaluated 42 subjects who met the International Headache Society's criteria. During the first month of follow-up with exposure to PEMF, 73% of those receiving actual exposure, reported decreased headaches with 45% a substantial decrease and 14% an excellent decrease. Ten of the 22 subjects who had received actual exposure received two additional weeks of actual exposure, after their initial month. All showed decreased headache activity with 50% a substantial decrease and 38% an excellent decrease. Sherman R. et.al concluded that exposure to PEMF for at least 3 weeks is an effective, short-term intervention for migraine.

Jørgensen et al (1994 International Pain Research Institute, Los Angeles, CA, USA) studied the effects of PEMF on tissue trauma and concluded: “Unusually effective and long-lasting relief of pelvic pain of gynecological origin has been obtained consistently by short exposures of affected areas to the application of a magnetic induction device. Treatments are short, fast-acting, economical, and in many instances have obviated surgery”. Patients with typical cases such as dysmenorrhoea, endometriosis, ruptured ovarian cyst, acute lower urinary tract infection, post-operative haematoma, and persistent dyspareunia who had not received analgesic medication were treated with pulsed magnetic field treatment and evaluated. The results showed that 90% of the patients experienced marked, even dramatic relief, while 10% reported less than complete pain.

Hedén P, Pilla AA. (2008 Department of Plastic Surgery, Stockholm, Sweden) studied the Effects of pulsed electro-magnetic fields on postoperative pain in breast augmentation patients. She notes: “Postoperative pain may be experienced after breast augmentation surgery despite advances in surgical techniques, which minimize trauma. The use of pharmacological analgesics and narcotics may have undesirable side effects that can add to patient morbidity”. This study was undertaken to determine if PEMF could provide pain control after breast
augmentation. Postoperative pain data were obtained and showed that pain had decreased in the treated patient group by nearly a factor of three times that for the control group. Patient use of postoperative pain medication correspondingly also decreased nearly three times faster in the active versus the sham groups. Hedén P and Pilla AA concluded: “Pulsed electromagnetic field therapy, adjunctive to standard of care, can provide pain control with a noninvasive modality and reduce morbidity due to pain medication after breast augmentation surgery.”

The Clinical Rheumatology Journal, volume 26-1, January 2007 (Springer London) reported on the Effectiveness of PEMF therapy in lateral epicondylitis by Kaan Uzunca, Murat Birtane and Nurettin Taştıkın (Trakya University Medical Faculty Physical Medicine and Rehabilitation Department, Edirne, Turkey): “We aimed to investigate the efficacy of PEMF in lateral epicondylitis comparing the modality with sham PEMF and local steroid injection”. Patients with lateral epicondylitis were randomly and equally distributed into three groups. One group received PEMF, another sham PEMF, and the third group a corticosteroid + anesthetic agent injection. Pain levels during rest, activity, nighttime, resisted wrist dorsiflexion, and forearm supination were investigated with visual analog scale (VAS). Pain threshold on elbow was determined with an Algometer. All patients were evaluated before treatment, at the third week and the third month. Pain levels were significantly lower in the group treated with the local steroid at the third week, but the group treated with PEMF had lower pain during rest, activity and nighttime than the group receiving steroids at the third month. Lau (School of Medicine, Loma University, USA) reported on the application of PEMF therapy to the problems of diabetic retinopathy. Patients were treated over a 6-week period, 76% of the patients had a reduction in the level of numbness and tingling. All patients had a reduction of pain, with 66% reporting that they were totally pain-free.

Sanseverino et al (1999, Universita di Bologna, Italy) studied the therapeutic effects of PEMF on joint diseases, in chronic as well as acute conditions on more than 3,000 patients over a period of 11 years. Follow-up was pursued as constantly as possible. Pain removal, recovery of joint mobility and maintenance of the improved conditions represented the parameters for judging the results as good or poor. The chi-square test was applied in order to evaluate the probability that the results are not casual. A general average value of 78.8% of good results and 21.2% of poor results was obtained. A higher, 82% of good results were observed when single joint diseases were considered and 66% of good results with respect to multiple joint diseases (polyarthrosis). The high percentage of good results obtained and the absolute absence of both negative results and undesired side-effects led to the conclusion that PEMF treatment is an excellent physical therapy in cases of joint diseases. A hypothesis is advanced that external magnetic fields influence transmembrane ionic activity.

In a 2008 randomized clinical trial to determine if a physics-based combination of simultaneous static and time-varying dynamic magnetic field stimulation to the wrist can reduce subjective neuropathic pain and influence objective electrophysiologic parameters of patients with carpal tunnel syndrome, Weintraub et al report: “PEMF exposure in refractory carpal tunnel syndrome provides statistically significant short- and long-term pain reduction and mild improvement in objective neuronal functions.”

In a 2009 evidence-based analysis on the use of PEMF therapy in clinical plastic surgery, Strauch et al (Einstein College of Medicine, Bronx, NY, USA) explain: "Our objective was to review the major scientific breakthroughs and current understanding of the mechanism of action of PEMF therapy... The results show that PEMF therapy has been used successfully in the management of postsurgical pain and edema, the treatment of chronic wounds, and in facilitating vasodilatation and angiogenesis... with no known side effects for the adjunctive, noninvasive, nonpharmacologic management of postoperative pain and edema... Given the recent rapid advances in development of PEMF devices what has been of most significance to the plastic surgeon is the laboratory and clinical confirmation of decreased pain and swelling following injury or surgery.”

Because of the interaction between the biological systems and natural magnetic fields, PEMFs can affect pain perception in many different ways.

PEMF Therapy Blocks Pain

PEMF therapy has shown to be effective at reducing pain both in the short-term and in the long-term. The ways by which PEMF therapy relieves pain include pain blocking, decreased inflammation, increased cellular flexibility, increased blood and fluids circulation, and increased tissue oxygenation.

The trans-membrane potential, (“TMP”) is the voltage difference (or electrical potential difference) between the interior and exterior of a cell. An electrochemical gradient results from a spatial variation of both an electrical potential and a chemical concentration across a membrane. Both components are often due to ion gradients, particularly proton gradients, and the result is a
type of potential energy available for cellular metabolism. This can be calculated as a thermodynamic measure, an electrochemical potential that combines the concepts of energy stored in the form of chemical potential, which accounts for an ion's concentration gradient across a cellular membrane, and electrostatics, which accounts for an ion's tendency to move relative to the TMP. Differences in concentration of ions on opposite sides of a cellular membrane produce the TMP. The largest contributions usually come from sodium (Na\(^+\)) and chloride (Cl\(^-\)) ions which have high concentrations in the extra cellular region, and potassium (K\(^+\)) ions, which along with large protein anions have high concentrations in the intracellular region. Opening or closing of ion channels for ion transport (Na\(^+\), Ca\(^{2+}\), K\(^+\), Cl\(^-\)) in and out of cells at one point in the membrane produces a local change in the TMP, which causes an electric current to flow rapidly to other points in the membrane that occurs with the movement of electrons.

Opening and closing of ion channels can induce a departure from the resting potential, called a depolarization if the interior voltage rises (say from -70 mV to -65 mV), or a hyper polarization if the interior voltage becomes more negative (for example, changing from -70 mV to -80 mV). In excitable cells, a sufficiently large depolarization can evoke a short-lasting all-or-nothing event called an action potential, in which the TMP very rapidly undergoes a large change, often reversing its sign. Special types of voltage-dependent ion channels that generate action potentials but remain closed at the resting TMP can be induced to open by a small depolarization.

In a lecture on Pain Reduction, Dr. D. Laycock, Ph.D. Med. Eng. MBES, MIPEM, B.Ed., inspired by the works of Adams et al (1997) explain how PEMF therapy affects pain transmission at the levels of the neurons. “It is necessary to understand the mechanism of pain transmission to understand how pain blocking can take place with PEMF therapy. Pain is transmitted along the nerve cells by an electric signal. This signal encounters synaptic gaps at intervals. The pain signals are transmitted along nerve cells to pre-synaptic terminals. At these terminals, channels in the cell alter due to a movement of ions. The TMP changes, causing the release of a chemical transmitter from a synaptic vesicle contained within the membrane. The pain signal is chemically transferred across the synaptic gap to chemical receptors on the post-synaptic nerve cell. This all happens in about 1/2000th of a second, as the synaptic gap is only 20 to 50 nm (nano meters) wide. As the pain signal, in chemical form, approaches the post-synaptic cell, the membrane changes and the signal is transferred. During quiescent times, cells possess a small charge of about -70mV between the inner and outer membranes. When a pain signal arrives, it temporarily depolarizes the nociceptive cell and raises the cell TMP to +30mV. This increase is sufficient to open channels in the cell membrane allowing the exchange of the sodium (Na\(^+\)) and potassium (K\(^+\)) ions.”

When an action potential begins, the channels that allow crossing of the Na\(^+\) ions open up. When the Na\(^+\) channels open, the depolarization occurs, the Na\(^+\) rushes in because both of the greater concentration of Na\(^+\) on the outside and the more positive voltage on the outside of the axon. The flow of positively charged ions into the axon leads the axon to become positively charged relative to the outside. With each positively charged Na\(^+\) ion that enters the axon, another positive charge is inside and one fewer negative charge is outside the axon. Thus, together the inside grows increasingly more positive and
the relative concentration of Na+ inside the axon relative to outside the axon grows greater. This initial phase of the action potential is called the depolarization phase. Now as the depolarization phase progresses, the status of the two physical forces that have been discussed changes. At the end of the depolarization phase, the voltage of the inside of the axon relative to the outside is positive and the relative concentration of Na+ ions inside the axon is greater than at the beginning of the action potential. The inside of the axon becomes sufficiently positive, about +30 mV as an average value, the Na+ channels close. This closing of the Na+ channels will greatly limit the ability of Na+ ions to enter the axon. In addition to the Na+ channels closing, the potassium (K+) channels open. Now K+ ions are free to cross the channels and now leave the axon due both to the greater concentration of K+ on the inside and the reversed voltage levels. The action potential is therefore not the movement of voltage or ions but the flow of these ion channels opening and closing moving down the axon.

Axon at Resting Potential

By causing a hyperpolarized state at the neuronal membrane, PEMF therapy effectively blocks pain as it prevents the threshold necessary to transmit the pain signal to be reached. Similarly, PEMF therapy effectively increases the TMP of damaged cells thus allowing them to recover their functions, heal and improve their metabolism. The Encyclopedia of Nursing and Allied Health defines the use of Electrotherapy for pain relief as effective to manage both acute and chronic pain. In the Gate model of pain, the neural fibers that carry the signal for pain and those that carry the signal for proprioception (body and limb position) are mediated through the same central junction. Because signal transmission along pain fibers is slower than transmission along proprioception fibers, the Gate model suggests that intense stimulation of proprioception fibers can block the slower-moving pain signals. That PEMF therapy effectively reduces pain in the short and long-term has been demonstrated but it is unclear whether the pain blocking mechanisms provides temporary relief while treatment occurs or can also lead to permanent changes with repeated treatments.

Research by Warnke established that the application of PEMF therapy has an effect on the quiescent potential of the neuronal synaptic membrane (Warnke, 1983; Warnke et al 1997). “It suggested that the effect is to lower the potential to a hyperpolarized level of −90mV. When a pain signal is received, the TMP has to be raised again in order to fire an action potential via neurotransmitters but it only achieves to raise the cell TMP to an approximate +10mV. This potential is well below the threshold of +30mV necessary to release the relevant neurotransmitters into the synaptic cleft and the pain signal is effectively blocked”.

By causing a hyperpolarized state at the neuronal membrane, PEMF therapy effectively blocks pain as it prevents the threshold necessary to transmit the pain signal to be reached. Similarly, PEMF therapy effectively increases the TMP of damaged cells thus allowing them to recover their functions, heal and improve their metabolism. The Encyclopedia of Nursing and Allied Health defines the use of Electrotherapy for pain relief as effective to manage both acute and chronic pain. In the Gate model of pain, the neural fibers that carry the signal for pain and those that carry the signal for proprioception (body and limb position) are mediated through the same central junction. Because signal transmission along pain fibers is slower than transmission along proprioception fibers, the Gate model suggests that intense stimulation of proprioception fibers can block the slower-moving pain signals. That PEMF therapy effectively reduces pain in the short and long-term has been demonstrated but it is unclear whether the pain blocking mechanisms provides temporary relief while treatment occurs or can also lead to permanent changes with repeated treatments.
PEMF Therapy Decreases Inflammation
Several factors may contribute to inflammation including injury, tissue damage, a poor localized circulation with the formation of edema. Inflammation causes pain. Swelling and bruising is an inflammation and discoloration of soft tissue caused by an impact injury or trauma. It can also result from surgery. Tissue cells are inherently like tiny electrically charged machines. When a cell is traumatized, the cell’s electrical charge is diminished; this causes normal cell functions and operations to shut down. Cells that are scarred or fibrotic with adhesions have a TMP charge of approximately -15 mV, degenerative or immune-compromised cells average -30 mV, both low TMPs. With the raised TMP, the body releases chemical signals that cause inflammation swelling and bruising resulting in pain and inhibiting the cell communication pathways necessary for healing to begin. Numerous clinical studies have demonstrated that PEMF therapy has been successful in reducing inflammation. PEMF therapy treats the cellular source of swelling by recharging the cells with a mild electromagnetic current. This stops the release of pain and inflammatory mediators, reduces inflammatory fluids and allows an increase in blood flow, therefore increased oxygen intake, to help the cells heal faster with less swelling, pain and bruising.

In a study on the effect of wound healing electromagnetic field on inflammatory cytokine gene expression in rats, Jasti et al (2001) states: “Inflammation is characterized by massive infiltration of T lymphocytes, neutrophils and macrophages into the damaged tissue. These inflammatory cells produce a variety of cytokines, which are the cellular regulators of inflammation”. In a study on Low Frequency PEMF—a viable alternative therapy for arthritis published in 2009, Ganesan et al (Department of Biotechnology, Chennai, India) declare: “PEMF for arthritis cure has conclusively shown that PEMF not only alleviates the pain in the arthritis condition but it also affords chondroprotection, exerts anti-inflammatory action and helps in bone remodeling, and this could be developed as a viable alternative for arthritis therapy”. Damaged cells are also energy deficient; thus they have low oxygen levels, high in sodium levels, and have a faltered electrochemical gradient. By inducing a mild electrical current into damaged cells, PEMF therapy slows or stops the release of pain and inflammatory mediators, increases blood flow, and re-establishes normal cell interaction. PEMF stimulates and restores the electrochemical gradient, the cell starts pumping sodium out, potassium enters the cell, the swelling resolves, oxygen starts flowing back in, and pain improves. Due to the density of the cell tissue, change requires stronger pulsed magnetic fields to be able to restore the healthy TMP to its optimal -70 mV. Several factors influence tissue inflammation and the processes by which PEMF therapy operates to reduce inflammation include complex mechanical, chemical, electrical and magnetic processes along with increased circulation, oxygenation and cellular activity. With reduced inflammation, pain decreases and faster tissue healing occurs.

PEMF Increases Blood and lymphatic Circulation
The arterial and venal blood vessels are intimately associated with the lymphatic system in the surrounding tissues of the body. As the blood and lymphatic vessels bring oxygen and nutrients to the cells and remove their waste products, they are nourishing and detoxifying the cells, tissues and body.

As PEMF therapy mechanically stimulates blood vessels and blood flow, the blood vessels pump blood and oxygen into the cells. Simultaneously, PEMF therapy mechanically stimulates the lymphatic vessels and waste products are hauled away from the cells more efficiently. PEMF therapy supports immune health by mechanically stimulating lymphatic drainage and blood flow.

diagram:

Lymp Capillaries in the Tissue Spaces

In June 2004, The Faseb Journal states: “PEMF therapy has been shown to be clinically beneficial in repairing bones and other tissues, but the mechanism in action is unclear. The results of a study done at the New York University Medical Center (Institute of Reconstructive Plastic Surgery, NY, NY, USA) demonstrates that electromagnetic fields increased angiogenesis, the growth of new blood vessels, in vitro and in vivo through the endothelial release of FGF-2, fibroblast growth factor-2. The delivery of PEMF therapy in low doses identical to that currently in clinical use significantly increased endothelial cell proliferation and tubulization, which are both important processes for vessel formation. The ability of PEMF to increase cell proliferation was unique to endothelial cells, which seemed to be the primary target
of PEMF stimulation, releasing a protein in a paracrine fashion (or signaling to adjacent cells and other types of cells) to induce changes in neighboring cells and tissues. Since direct stimulation did not produce significant changes in osteoblast proliferation, the ability of PEMF therapy to enhance the healing of complicated fractures is likely the result of increased vascularity rather than a direct effect on osteogenesis as previously believed. The coordinated release of FGF-2 suggests that PEMF therapy may facilitate healing by augmenting the interaction between osteogenesis and blood vessel growth. As such, PEMF therapy may offer distinct advantages as a non-invasive and targeted modality that is able to release several growth factors to achieve therapeutic angiogenesis. The fibroblast and endothelial cells are made to go embryonic due to drastic changes in ionic concentrations in the cells’ cytoplasm and therefore the cells’ nuclei. These ionic concentrations react with the cell DNA opening up some gene sets and closing down others. It is apparently the rapid onset of a strong pulsed electric field generated by the pulsed magnetic field, which causes some cell ion gate types to open and be force fed ions by the same electric field. As demonstrated in a study entitled: “Impulse magnetic-field therapy for erectile dysfunction: a double-blind, placebo-controlled study”, increased micrcirculation leads to improvements in macro-circulation. The study by Pelka et al (Universitat der Bundeswehr Munchen, Munich, Germany) assessed the efficacy of three weeks of PEMF therapy for erectile dysfunction. In the active-treatment group, all efficacy endpoints were significantly improved at study end with 80% reporting increases in intensity and duration of erection, frequency of genital warmth, and general well-being. In contrast, only 30% of the placebo group noted some improvement in their sexual activity; 70% had no change. No side effects were reported.

PEMF therapy has proven efficacious at increasing the flow of ions and nutrients into the cells and at stimulating blood and interstitial fluid circulation. With increased lymphatic drainage and blood flow, cells receive more oxygen and nutrients, and eliminate toxins faster. Cells are therefore able to function better and tissues repair themselves more efficiently. Through the same processes, vital organs such as the liver, kidneys and colon are able to rid themselves of impurities thus detoxifying the body and allowing better organ functionality.

PEMF Increases Cellular Membrane Permeability

As early as 1940, it was suggested that magnetic fields affect the TMP and the flow of ions in and out of the cells and might therefore influence cellular membrane permeability. It has since been established that magnetic fields can influence ATP (Adenosine Tri-phosphate) production; increase the supply of oxygen and nutrients via the vascular and lymphatic systems; improve the removal of waste via the lymphatic system; and help re-balance the distribution of ions across the cell membrane. Healthy cells in tissue have a voltage difference between the inner and outer membrane referred to as the membrane resting potential that ranges from -70 to -80 mV. This causes a steady flow of ions through its voltage-dependant ion channels. In a damaged cell, the potential is raised and an increased sodium inflow occurs. As a result, interstitial fluid is attracted to the inner cellular space, resulting in swelling and edema. The application of PEMF to damaged cells accelerates the re-establishment of normal potentials (Sanseverino, 1999) increasing the rate of healing and reducing swelling. In biology, depolarization is a change in a cell’s TMP, making it more positive or less negative. In neurons and some other cells, a large enough depolarization may result in an action potential. Hyper polarization is the opposite of depolarization, and inhibits the rise of an action potential. If a cell has a resting potential of -70mV and the membrane potential rises to -50mV, then the cell has been depolarized. Depolarization is often caused by influx of cations, e.g. Na+ through Na+ channels, or Ca2+ through Ca2+ channels. On the other hand, efflux of K+ through K+ channels inhibits depolarization, as does influx of Cl− (an anion) through Cl− channels. If a cell has K+ or Cl− currents at rest, then inhibition of those currents will also result in a depolarization.

As the magnetic field created fluctuates, it induces an electron flow or a current in one direction through the living tissue. As electrons always flow from a negative (cathode) to a positive (anode) potential, when the magnetic field vanishes, the direction of the electron flow is reversed. Therefore such induced polarized currents stimulate the exchange of ions across the cell membrane. As the electro-magnetic field pulses temporarily hyperpolarize and depolarize the membrane, the ion channels open and close allowing a more efficient ion exchange, as with the sodium-potassium (Na+, K+) pump, thus increasing cellular oxygenation and nutrition as sodium export stimulates several secondary active transporters.

PEMF Increases Cell Metabolism

In a study on Chronic Fatigue Syndrome and Electromedicine, Thomas Valone, Ph.D, showed that damaged or diseased cells present an abnormally low TMP, about 80% lower than healthy cells. This signifies a greatly reduced metabolism and, in particular, impairment of the
electrogenic Na+/ K+ pump activity associated with reduced ATP (Adenosine Tri-Phosphate) production.

The Na+/ K+ pump within the membrane forces a ratio of 3Na+ ions out of the cell for every 2K+ ions pumped in for proper metabolism. The sodium-potassium pump uses energy derived from ATP to exchange sodium for potassium ions across the membrane. An impaired Na+/ K+ pump results in edema (cellular water accumulation) and a tendency toward fermentation, a condition known to be favorable toward cancerous activity. French researcher Louis C. Kervran demonstrated that Sodium plus Oxygen plus Energy (ex: magnetic) nuclearily transmutes into Potassium as follows:

\[
11 \text{Na}_{23} + 8 \text{O}_{16} + \text{energy} = 19 \text{K}_{39}
\]

This nuclear process is accomplished with low heat, in a low rate of thermal decomposition, which is the most important and commonly occurring phenomenon of Nuclear Fusion in Biology. As a result, utilization of oxygen in the cells increases and the body increases production of its own energy supplier (ATP). The organism becomes more stable and efficient; toxins and waste products are more rapidly broken down. The body's natural regulatory mechanisms are reinforced and healing processes accelerated.

Free radical proliferation is linked to pathological changes that cause cellular malfunction or mutation (i.e. cancer) as well as protein degradation. Free radicals also play a large role in causing damage to all cells of the body but particularly that of the immune system. According to studies, free radicals also “deplete cellular energy” by interfering with mitochondrial function and contribute to a shortened lifespan. Cellular energy generation in the mitochondria is both a key source and a key target of oxidative stress in the cells. Seeking an electron to complete the radical, free radicals cause chain reactions as electrons are ripped from molecules, creating another free radical. Antioxidants such as vitamin A, vitamin E, selenium and coenzyme Q10 supply free electrons and are usually prescribed to provide limited relief in counteracting free radical ravages. However, electronic antioxidants produced by PEMF therapy can also satisfy and terminate free radicals by abundantly supplying the key ingredient usually found only in encapsulated antioxidant supplements…the electron (Thomas Valone, Ph.D. on Bioelectromagnetics, 2003).

On the biophysical level, as PEMF therapy increases the circulation of electrons across the membrane, a parallel phenomenon seems to occur: the acceleration of ATP synthesis and of other aspects of the cell’s biochemical anabolism. As electrons are drawn to the inner membrane, they increase the ionic charge inside the cell and, thus, the TMP. In 1976, Nobel Prize winner Dr. Albert Szent-Gyorgi established that structured proteins behave like diodes or rectifiers. A diode passes electricity in only one direction. He proposed that cell membranes can rectify an induced voltage and this rectifying property of cell membranes can cause changes in the ion concentration of the inner and outer surfaces of the cell membrane in such a way as to increase the TMP and effectively stimulate the activity of the Na+/ K+ pump. Cell health is directly affected by the health of the Na+/ K+ pump, which is directly proportional to the TMP. Based on these biophysical principles, an endogenous high voltage EMF potential of sufficient strength will theoretically stimulate the TMP, normal cell metabolism, the sodium pump, ATP production and healing. This has already been found in the literature: “TMP is proportional to the activity of this pump and thus to the rate of healing.” Furthermore, “increases in the TMP have also been found to increase the uptake of amino acids.” (Dr. Albert Szent-Gyorgi) Electro-medicine therefore, appears to connect to and recharge the storage battery of the TMP. This is important, as increasing the supply of nutrients is also an effective aid to cell repair. This is particularly true in trauma where circulation has been impaired by crushed or severed blood vessels, or by the inflammation and swelling that compress capillaries, blocking the flow to both the injured and uninjured cells.

PEMF Increases Energy Storage and Cellular Activity

At the sub-atomic level, as the pulsed fields expand and collapse through a tissue, the protein molecules, such as the cytochromes in the cells’ mitochondria, gain electrons and, in doing so, store energy. Even though the instantaneous peak magnetic energy amplitudes are very high, the average magnetic amplitudes generated by PEMF therapy remain low, the average total energy transmitted to the tissues is not powerful enough to create heat within the cells, nor for the cells’ atoms to
vibrate much and cause a thermal increase, nor for an electron to jump to a higher orbit and emit heat as it returns to its orbit of origin. There is only sufficient average energy for the electron-spin to be increased, thus, energy gets stored in the cells’ mitochondria by converting ADP (Adenosine Di-Phosphate) to ATP molecules more rapidly by the addition of the phosphate radical to the ADP. The ATP molecules store and transport the energy that is then used in the many chemical processes within the cell that participate in all the metabolic functions of living cells. This phenomenon is referred to as the electron transport chain and is described in the diagrams below showing ATP structure.

The diagram below describes the electron transport chain

Understanding the effects of PEMF therapy at the atomic level requires a basic understanding of Quantum Mechanics that is provided here. Solving the Schrödinger equation for a molecule and determining probable amplitude for its electrons over an infinite number of possible trajectories yields the vibrational states of a molecule. This describes how the quantum state or wave function of a molecule or physical system changes in time. A diatomic molecule, which only involves one vibrational degree of freedom (the stretching of the bond between the electron and the position) provides a simple description (Atkins et al, 2002). Quantum mechanical considerations show that during the electronic excitation of a particular molecule at the same orbital state, the energy of an excited triplet state (T1) is lower than that of its corresponding singlet state (S1). In
biomolecules, the non-radiative crossing from the state S2 to S1 is generally the dominant mechanism. This crossing between two electronic states of the same spin multiplicity is called internal conversion ("IC") (Atkins et al., 2002). The IC process is then followed by a rapid vibrational relaxation (decrease) where the excess vibrational energy is dissipated into heat, the molecule now ending up at the lowest, zero-point vibrational level of the S1 electronic state. From here, it can return to the ground electronic state S0 by emitting a photon (radiatively). The time-varying magnetic fields associated with PEMF therapy apparently affect electronic states via the intercrossing system ("ISC"), which is an excitation from state Si to Ti, where Ti is the corresponding triplet state (2 electrons are unpaired). The ISC type of crossing is heavily affected by the spin-orbit coupling, which relaxes the spin property by mixing with an orbital character (Szent-Gyorgyi A, 1976; Atkins et al., 2002). The ISC type of crossing leads to phosphorescence rather than fluorescence with radically different heat properties. Heavy metals, molecular oxygen having a triplet ground state, paramagnetic molecules such as hemoglobin, and heavy atoms such as iodine increase the intersystem crossing rate (Prasad, 2003).

In shifting positions around an atomic nucleus, an electron generates energy and emits a magnetic resonance of specific frequency. Thus, the magnetic resonance field frequency of the various body tissues and organs is a product of the individual atomic, molecular and cellular frequencies specific to the molecules that constitute the particular tissue or organ. PEMF therapy therefore confuses the specific inherent magnetic resonance and temporarily modifies it in each atom, molecule, cell, and thus, tissue and organ.

From the perspective of biophysics, physiological markers represent a level of "order or disorder" in the magnetic resonance of a normal atom that correlates to internal and external factors. The Pulsed Electro-Magnetic Fields generated by PEMF therapy devices provide sufficient energy to affect the magnetic resonance of the atom as the electron is energized. When a disruption in the magnetic resonance occurs, the magnetic resonance of the electrons at the atomic level also exhibits a change, a phase shift that disturbs and breaks the once orderly pathways of communication that is usually transmitted from atom to molecule, molecule to cell, cell to tissue, and tissue to organ. In doing so, the phase shift influences the physical and chemical characteristics of the physiological markers.

PEMF therapy has proven beneficial in many ways for the various energetic body functions. All of the many types of living cells that make up the tissues and organs of the body are tiny electrochemical units. They are powered by a "battery" that is continually recharged by the cells' metabolic chemistry in a closed loop of biological energy.

PEMF Increases Cellular Membrane Flexibility and Elasticity

A study entitled "Modulation of collagen production in cultured fibroblasts by a low-frequency pulsed magnetic field" by Murray et al (Biochim Biophys Acta) shows that the total protein synthesis was increased in confluent cells treated with a pulsed magnetic field for the last 24 h of culture as well as in cells treated for a total of 6 days. However, in 6 day-treated cultures, collagen accumulation was specifically enhanced as compared to total protein, whereas after short-term exposure, collagen production was increased only to the same extent as total protein. These results indicate that a pulsed magnetic field can specifically increase collagen production, the major differentiated function of fibroblasts, possibly by altering cyclic-AMP metabolism.

PEMF therapy successfully increases membrane flexibility by increasing the synthesis of collagen, a crucial protein that supports membrane elasticity, within the fibroblasts. In doing so, PEMF therapy increases tissue and muscle flexibility and, in doing so, increases range of motion.

PEMF Stimulates Cellular Communication and Replication

DNA synthesis is linked to pulsed, low intensity magnetic fields (Liboff et al, 1984; Rosch et al, 2004). Proteins are conductors of electricity. When exposed to strong fields, proteins are subject to electrophoresis. The Ribonucleic Acid ("RNA") messengers that are synthesized from a Deoxyribonucleic Acid ("DNA") template during transcription mediate the transfer of genetic information.
from the cell nucleus to ribosomes in the cytoplasm and serve as a template for protein synthesis.

Since RNA mechanically influences the DNA and encoded proteins influence RNA, the flow of information to and from genes may be linked to changing magnetic fields (Einstein, 1977; Goodman et al, 1983). Since magnetic fields interact with changing electrical charges, and recent studies (Dandliker et al, 1997) showed DNA conducts electrons along the stacked bases within the DNA double helix, electro-magnetic fields may initiate transcription of the precursor mRNA by accelerating electrons moving within the DNA helix (McLean et al, 2003).

PEMF Increases Cellular Genesis (Cellular Growth and Repair)

The many intra and inter cellular processes and activity stimulated by PEMF therapy lead to faster cellular and tissue regeneration. This fact is shown by the results of many studies on a variety of tissues, including bones, spine, cartilage, intestines, blood vessels, nerves, brain, and muscles.

In December 2004, the Swiss Medical Tribune stated that PEMF therapy provided: “improvement of blood circulation, relief from pain, improvement of bone healing and the stimulation of nerve cells. Not only is the PEMF therapy effective in disease condition: it is an excellent means of preventing stress, assisting regeneration and recovery after sports exertion... Through metabolic activation and blood circulation more nutrients and oxygen are available to muscle cells, less damage is experienced, and efficiency is improved.”

- **PEMF and the spine**

In a long-term study entitled: “Spine fusion for discogenic low back pain: outcome in patients treated with or without pulsed electromagnetic field stimulation”, Marks RA. (Richardson Orthopaedic Surgery, TX, USA) randomly selected 61 patients who underwent lumbar fusion surgeries for discogenic low back pain between 1987 and 1994 and had failed to respond to preoperative conservative treatments. Average follow-up time was 15.6 months postoperatively. Fusion succeeded in 97.6% of the 42 patients who received PEMF stimulation for only 52.6% of the 19 patients who did not receive electrical stimulation of any kind. A similar study by Richard A. Silver, M.D. (Tucson Orthopaedic & Fracture Surgery Associates, Ltd., Tucson, AZ, USA) with 85 patients who had undergone surgery of posterior lumbar interbody fusion (PLIF) and had risk factors associated with a poor prognosis for healing, including smoking, prior back surgery, multiple spinal levels fused, diabetes mellitus, and obesity, roentgenographic examination and clinical evidence indicated that all but two patients achieved successful fusion. Of the 83 patients with successful spinal fusion, 29 (34.9%) were assessed as "excellent," 45 (54.2%) as "good," 3 (3.6%) as "fair", and 6 (7.2%) as "poor". Adjunctive treatment with PEMF appeared effective in promoting spinal fusion following PLIF procedures across all patient subgroups.

- **PEMF on bone and cartilage**

In a study entitled: “Modification of biological behavior of cells by Pulsing Electromagnetic fields”, 20 subjects of ages between 57 and 75 years with decreased bone mineral density as defined by a bone densitometer, were treated with PEMF therapy during a period of 12 weeks by Ben Philipson, Curatronic Ltd. (University of Hawaii School of Medicine, HI, USA). After a period of 6 weeks, the bone density rose in those patients with an average of 5.6%. Properly applied pulsed electromagnetic fields, if scaled for whole body use, have clear clinical benefits in the treatment of bone diseases and related pain, often caused by micro-fractures in vertebrae. In addition, joint pain caused by worn out cartilage layers can be treated successfully, through electromagnetic stimulation. PEMF application promotes bone union by electric current induction, which changes the permeability of cell membrane allowing more ions across, affects the activity of intracellular cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), and accelerates osteoblast differentiation by activation of p38 phosphorylation. PEMF stimulation also increases the partial oxygen pressure and calcium transport. Repair and growth of cartilage is thus stimulated, preventing grinding of the bones.

- **PEMF and tendonitis**

The Department of Rheumatology at Addenbrookes Hospital carried out investigations into the use of PEMF therapy for the treatment of persistent rotator cuff tendonitis. PEMF treatment was applied to patients who had symptoms refractory to steroid injection and other conventional treatments. At the end of the trial, 65% of these were symptom free, with 18% of the remainder being greatly improved.

- **PEMF and intestines**

An experimental study was designed to investigate the effect of PEMF therapy on intestinal healing and to compare small and large intestinal anastomoses, or connections between the loops of the intestines, by Nayci et. al (Department of Pediatric Surgery, Mersin University Medical Faculty, Turkey). The study demonstrated that PEMF stimulation provided a significant gain in anastomotic healing in both small and large intestine, and a significant increase in both biochemical and mechanical parameters.
- PEMF and the brain
A four-week double-blind, placebo-controlled study conducted by Uni der Bundeswehr (Munich, Germany) assessed the efficacy of PEMF Therapy for Insomnia. One hundred one patients were randomly assigned to either active treatment (n = 50) or placebo (n = 51) and allocated to one of three diagnostic groups: sleep latency; intermittent sleep; or nightmares. The results showed 70% (n = 34) of the patients given active PEMF treatment experienced substantial or even complete relief of their complaints; 24% (n = 12) reported clear improvement; 6% (n = 3) noted a slight improvement. Only one placebo patient (2%) had very clear relief; 49% (n = 23) reported slight or clear improvement; and 49% (n = 23) saw no change in their symptoms. No adverse effects of treatment were reported. Stunning results were obtained in a study entitled Protection against focal cerebral ischemia following exposure to a pulsed electro-magnetic field, Grant G et al (1994 Department of Neurosurgery, Stanford University, CA, USA) stated: “There is evidence that electromagnetic stimulation may accelerate the healing of tissue damage following ischemia. Exposure to pulsed electromagnetic field attenuated cortical ischemia edema on MRI at the most anterior coronal level by 65%. On histological examination, PEMF exposure reduced ischemic neuronal damage in the same cortical area by 69% and by 43% in the striatum. Preliminary data suggest that exposure to a PEMF of short duration may have implications for the treatment of acute stroke”.

- PEMF and multiple sclerosis
At the Biologic Effects of Light 1998 Symposium, Richards et al explain the effects of pulsing magnetic field on brain electrical activity in multiple sclerosis: “Multiple sclerosis (MS) is a disease of the central nervous system. Clinical symptoms include central fatigue, impaired bladder control, muscle weakness, sensory deficits, impaired cognition, and others. The cause of MS is unknown, but from histologic, immunologic, and radiologic studies, we know that there are demyelinated brain lesions (visible on MRI) that contain immune cells such as macrophages and T-cells (visible on microscopic analysis of brain sections). Recently, a histologic study has also shown that widespread axonal damage occurs in MS along with demyelination. What is the possible connection between MS and bio-electromagnetic fields? We recently published a review entitled "Bio-electromagnetic applications for multiple sclerosis," which examined several scientific studies that demonstrated the effects of electromagnetic fields on nerve regeneration, brain electrical activity (electro-encephalography), neurochemistry, and immune system components. All of these effects are important for disease pathology and clinical symptoms in MS”.
He referred to a study that evaluated electro-encephalograms (EEG) in response to photic stimulation with flashing lights before and after PEMF exposure. The evidence showed a significant increase in alpha EEG magnitude that was greater in the active group compared to the placebo group demonstrating increased activity. Richards et al (Dep. Radiology, University of Washington, WA, USA) confirms the above conclusion in a double-blind study to measure the clinical and sub-clinical effects of an alternative medicine electromagnetic device on disease activity in multiple sclerosis. The MS patients were exposed to a magnetic pulsing device that was either active (PEMF) or inactive (placebo) for two months. Each MS patient received a set of tests to evaluate MS disease status before and after wearing the device. The tests included a clinical rating (Kurtzke, EDSS), patient reported performance scales (PS), and quantitative electro-encephalography (QEEG) during a language task. Although there was no significant change between pre-treatment and post-treatment in the EDSS scale, there was a significant improvement in the PS combined rating for bladder control, cognitive function, fatigue level, mobility, spasticity, and vision. There was also a significant change between pre-treatment and post-treatment in alpha EEG magnitude during the language task. Richards et al stated: “we have demonstrated a statistically significant effect of the magnetic pulsing device on patient performance scales and on alpha EEG magnitude during a language task”.
In “Treatment with AC PEMFs normalizes the latency of the visual evoked response in a multiple sclerosis patient with optic atrophy”, Sandyk (1998, Department of Neuroscience at the Institute for Biomedical Engineering and Rehabilitation Services of Touro College, Dix Hills, NY, USA) explains: “Visual evoked response (VER) studies have been utilized as supportive information for the diagnosis of MS and may be useful in objectively monitoring the effects of various therapeutic modalities. Delayed latency of the VER, which reflects slowed impulse transmission in the optic pathways, is the most characteristic abnormality associated with the disease. Brief transcranial applications of AC PEMFs in the picotesla flux density are efficacious in the symptomatic treatment of MS and may also reestablish impulse transmission in the optic pathways... The rapid improvement in vision coupled with the normalization of the VER latency despite the presence of optic atrophy, which reflects chronic demyelization of the optic nerve, cannot be explained on the basis of partial or full
reformation of myelin. It is proposed that in MS synaptic neurotransmitter deficiency is associated with the visual impairment and delayed VER latency following optic neuritis and that the recovery of the VER latency by treatment with PEMFs is related to enhancement of synaptic neurotransmitter functions in the retina and central optic pathways. Recovery of the VER latency in MS patients may have important implications with respect to the treatment of visual impairment and prevention of visual loss. Specifically, repeated applications of PEMFs may maintain impulse transmission in the optic nerve and thus potentially sustain its viability.”

Sandyk R. summarizes recent clinical work on the therapeutic effects of AC PEMF in MS: “Multiple sclerosis is the third most common cause of severe disability in patients between the ages of 15 and 50 years. The cause of the disease and its pathogenesis remain unknown. The last 20 years have seen only meager advances in the development of effective treatments for the disease. No specific treatment modality can cure the disease or alter its long-term course and eventual outcome. Moreover, there are no agents or treatments that will restore premorbid neuronal function. A host of biological phenomena associated with the disease involving interactions among genetic, environmental, immunologic, and hormonal factors, cannot be explained on the basis of demyelization alone and, therefore, require refocusing attention on alternative explanations, one of which implicates the pineal gland as pivotal. The pineal gland functions as a magneto-receptor organ. This biological property of the gland provided the impetus for the development of a novel and highly effective therapeutic modality, which involves transcranial applications of alternating current AC PEMFs flux density” (1997).

Summary
As evidenced by the many studies cited herein, it is clear that PEMF treatment stimulates many aspects of cellular metabolism and activity by increasing the TMP and flow of ions across the cell membrane. PEMF therapy increases blood circulation in and around damaged tissue, and effectively helps damaged cells heal by bringing more oxygen into the cells. Effects that are observed when the TMP is increased include: enhanced cellular energy (ATP) production, increased oxygen uptake, changes in entry of calcium, movement of sodium out of the cell, movement of potassium into the cell, changes in enzyme and biochemical activity, and changes in cellular pH will stimulate large amounts of lymphatic vessels to pump and drain lymph fluid which, in turn, supports immune health. This effect involves a chain of processes in the human body, which leads to the improvement of health without side effects including:

- Improved micro-circulation
- Increased supply of oxygen, ions and nutrients to cells
- Increased partial oxygen pressure
- Increased ATP production by excitation of electrons
- Stimulation of RNA and DNA production
- Accelerated protein bio-synthesis by electron and energy transfer
- Anti-oxidation regulation with increased circulation of available electrons
- Increased calcium transport and absorption for stronger bones, joints and muscles
- Enhanced cellular and tissue elasticity with increased collagen production
- Increased cellular genesis promoting bone, cartilage, tendon and soft tissue growth
- Stimulation of cellular repair mechanisms
- Enhanced macro circulation: by mechanically de-clumping blood cells, alternately dilating and constricting vessels, and through angiogenesis, the growth of new blood vessels
- Increased absorption of nutrients and pharmaceuticals
- Accelerated detoxification of cells and organs
- Decreased swelling, inflammation and pain
- Boosting of the immune system, the body’s defenses, by improving the rolling and adhesion behavior of white blood cells
- Supporting the body’s internal self-regulating mechanisms by activating cellular and molecular processes.

Beyond its complex mechanisms, PEMF therapy offers many health benefits. PEMFs help the natural body healing processes by delivering a non-invasive form of repetitive electrical stimulation that requires no direct contact with the skin surface. Magnetic fields have been shown to affect biologic processes and be effective in a wide range of medical conditions. PEMF therapy has proven beneficial in stimulating cellular metabolism, blood and fluids circulation, tissue regeneration and immune system response. Through these processes, cells are able to function better and tissues repair themselves more efficiently. Through the same processes, vital organs such as the liver, kidneys and colon are able to rid themselves of impurities thus detoxifying the body and allowing better organ functionality. PEMF treatment is effective at increasing bone formation and bone density, healing fractures and osteotomies, recovery from wounds.
and trauma, graft and post-surgical behavior, recovery from myocardial and brain ischemia (heart attack and stroke), tendonitis, osteoarthritis, and impaired neural function or spasticity from central nervous system diseases such as multiple sclerosis and spinal cord damage. PEMF stimulation offers a safer and more comfortable alternative for urinary incontinence to prior treatments. PEMF therapy improves sports performance, and simply helps to maintain good health. It stimulates muscles, connective tissues, intestines, tendons and cartilage, the brain and peripheral nerve sites. In doing so, PEMF therapy promotes healing and a return to higher activity levels. Functions that were lost begin to recover. Extensive research has been carried out to determine the mechanisms by which this occurs but, for the physiotherapist or other medical professional presented with a wide range of clinical problems, PEMF therapy is an invaluable aid to the clinic. PEMF therapy leaves you feeling relaxed, energized, renewed and with a sense of well-being.

Thank you to Wikipedia English for public access to its formidable scientific data resources.